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We present an extension of the genuinely multi-dimensional semi-discrete central scheme
developed in [A. Kurganov, S. Noelle, G. Petrova, Semidiscrete central-upwind schemes for
hyperbolic conservation laws and Hamilton–Jacobi equations, SIAM J. Sci. Comput. 23 (3)
(2001) 707–740.] to arbitrary orthogonal grids. The presented algorithm is constructed
to yield the geometric scaling factors in a self-consistent way.

Additionally, the order of the scheme is not fixed during the derivation of the basic algo-
rithm. Based on the resulting general scheme it is possible to construct methods of any
desired order, just by considering the corresponding reconstruction polynomial. We dem-
onstrate how a second order scheme in plane polar coordinates and cylindrical coordinates
can be derived from our general formulation. Finally, we demonstrate the correctness of
this second order scheme through application to several numerical experiments.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Numerical methods for the solution of systems of hyperbolic conservation equations of the form:
ou
ot
þr � FðuÞ ¼ 0 ð1Þ
are very important for many areas of physics. Here the spatial integral of u corresponds to a conserved quantity and FðuÞ is
the corresponding nonlinear advection flux. The quantity u can be either a scalar (e.g., the density in the hydrodynamic con-
tinuity equation) or a vector quantity (momentum in the corresponding evolution equation), which in general depends on all
three spatial coordinates. Below we will investigate the case where – due to symmetries of the corresponding problem – u
only depends on two rectangular coordinates.

To solve this system of equations many numerical methods have been developed. As will be discussed later, it is necessary
for these numerical methods to conserve the quantity corresponding to u in order to correctly capture discontinuities
appearing in the solution (see, e.g., [20]). Traditionally, most of these numerical methods have been derived for Cartesian
coordinates. For many applications, however, the geometry of the problem demands for other sets of coordinates. For exam-
ple numerical investigations of stellar structure, geophysical models, simulations of accretion disc flows and analyses of po-
sitive columns can most efficiently be performed by making use of spherical or cylindrical coordinates.

To derive a scheme for curvilinear orthogonal coordinates we state the explicit form of Eq. (1) for a general rectangular
grid. For two spatial dimensions (with x and y denoting arbitrary non-Cartesian coordinates) this is:
o

ot
uþ 1

h1h2

o

ox
ðh2f1ðuÞÞ þ

o

oy
ðh1f2ðuÞÞ

� �
¼ Sðx; yÞ ð2Þ
. All rights reserved.

(R. Kissmann).
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possibly including some geometrical source terms Sðx; yÞ on the right. These source terms can arise, when u is a vectorial
quantity. In this case the divergence of the tensorial flux function FðuÞ can yield (inertial) terms, which do not contain
any derivatives of u, when evaluated in non-Cartesian curvilinear coordinates. Since these source terms can be included
more or less trivially into the algorithm, we will concentrate only on the hyperbolic part of the base scheme. Additionally,
h1 and h2 are the geometrical scale factors, which depend on the coordinates under consideration, and f1 and f2 are the two
individual components of the flux function FðuÞ.

In the present paper we will focus on finite-volume central schemes due to their generality, which make them basically
independent of the eigenstructure of the system of equations to be solved. This has to be seen in contrast to upwind schemes
(like, e.g., the Godunov scheme – see [10]), where a Riemann solver and a characteristic decomposition is applied. Therefore,
central schemes can be implemented in a universal way and can then be applied without change to different systems of
equations. The basis of these central schemes is the well-known Lax–Friedrichs method [9]. Over the years this scheme
has been improved by the development of higher order methods (see, e.g., [26,25,6] or [21]). Corresponding multi-dimen-
sional versions of these schemes were developed, e.g., in Refs. [1,3,2,5,17,23] and [22]. These, again were implemented
for unstructured grids, e.g., in Refs. [4,18].

One remaining problem with the early central schemes is that they cannot be used with an arbitrarily small time-step.
This is due to an accumulation of numerical dissipation (see, e.g., [16] for a discussion), leading to the problem that these
schemes are not suitable for steady state simulations. The solution to this problem was an integration over Riemann fans
of variable width, which is determined by the maximum local signal propagation speed. Thereby, a non-staggered fully dis-
crete scheme could be derived, which was then transformed into a semi-discrete form (meaning a scheme, which was devel-
oped for the limit Dt ! 0). As is extensively discussed in [19], this form of the scheme has the advantage of a reduced
dissipation as compared to the fully discrete schemes. This is due to the fact that the fully discrete schemes obey a restricted
CFL stability condition (see [8] for a general discussion of the time-step limit), Dt � ðDxÞ2, which leads to an accumulation of
numerical errors due to the high number of time-steps. In contrast, the time-step of a semi-discrete scheme is determined by
the convective CFL limit, thus, allowing for much larger time-steps. An extension of this scheme to third order was presented
in [15], and the extension to multi-dimensions is discussed in Ref. [16].

All these schemes have in common that the change of the cell averaged conserved quantities is given as a function of their
point values on the cell boundaries. In order to compute these point values a reconstruction from the cell averages is re-
quired, the order of which basically determines the order of the resulting scheme. This reconstruction has to be chosen care-
fully to suppress spurious oscillations at steep gradients in the resulting flow. Here, different strategies may be applied, for
example the application of limiters such as minmod.

In this paper we will not discuss the fine aspects of the reconstruction – this has already been done by several authors
(see, e.g., [11,12,34,27,26,28,24,14,22] or [15]). We rather intend to develop the extension of the multi-dimensional semi-
discrete schemes to general orthogonal geometries. The resulting algorithm has a very general form: It is still possible to
choose the desired reconstruction, thus, leaving the choice of the order of the scheme to the user. In order to minimise the
numerical dissipation we stick to the idea of an integration over locally varying Riemann fans. The paper is organised as
follows: in Section 2 we start by deriving the scheme in a way that is independent of the resulting geometry and the
reconstruction. To enhance readability we will, however, derive the scheme only for two spatial dimensions. This deriva-
tion is easily extensible to higher dimensions (the results for the three-dimensional scheme are given in Appendix A). In
Section 3 we will consider the derivation of the special cases of plane polar and cylindrical coordinates from the general
scheme in detail, which is followed by a discussion of numerical experiments in Section 4. We end with the conclusion of
this paper.
2. General form for the semi-discrete scheme

Our starting point for the derivation of the general two-dimensional scheme for arbitrary orthogonal coordinates is Eq.
(2). Here we choose tn ¼ nDt for the temporal grid and xi ¼ h1ðx; yÞiDx, yj ¼ h2ðx; yÞjDy for the spatial grid, where h1ðx; yÞ
and h2ðx; yÞ are the scale factors for the corresponding orthogonal coordinate system, which in general are given by the rela-
tion hi ¼

ffiffiffiffiffi
gii
p

. Here gii are the diagonal elements of the corresponding metric tensor. Thus, the individual cells Ci;j have the
extent xi � h1ðxi; yjÞ Dx

2 and yj � h2ðxi; yjÞ Dy
2 leading to the cellular area:
jCi;jj ¼
Z x

iþ1
2

x
i�1

2

Z y
jþ1

2

y
j�1

2

h1ðn;gÞh2ðn;gÞdndg ð3Þ
For every time-step we obtain a piecewise polynomial reconstruction of the desired order from the cell averages obtained at
the end of the previous time-step �un

i;j :¼ �uðxi; yj; t
nÞ. This reconstruction is given by:
~unðx; yÞ :¼
X

i;j

pn
i;jðx; yÞvi;j ð4Þ
where vi;j is the characteristic function of the same cell and pi;jðx; yÞ is the reconstruction polynomial for the same cell. The
reconstruction polynomial has to fulfil:
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discont

R. Kissmann et al. / Journal of Computational Physics 228 (2009) 2119–2131 2121
�un
i;j ¼

1
jCi;jj

Z x
iþ1

2

x
i�1

2

Z y
jþ1

2

y
j�1

2

pn
i;jðn;gÞh1ðn;gÞh2ðn;gÞdndg ð5Þ
This piecewise polynomial interpolant may be discontinuous only at the cell boundaries x ¼ xi�1
2

or y ¼ yj�1
2
. In a short time Dt

these discontinuities can propagate a small distance, which depends on the local signal propagation velocity. The regions, in
which such discontinuities can occur are highlighted in Fig. 1, where a cell for a non-Cartesian grid is visualised. Their extent
is determined by the local maximum of the signal propagation velocity. Here the dark grey areas may contain discontinuities
in both of the grid directions, whereas the light grey areas may only contain such in one of the grid directions. In this work
we will be using the following estimate for these sub-regions of the cell Ci;j:
Di;jþ1
2

:¼ ½h1ðxi�1
2
; yjþ1

2
Þxi�1

2
þ aþ

i�1
2;jþ

1
2
Dt; h1ðxiþ1

2
; yjþ1

2
Þxiþ1

2
� a�iþ1

2;jþ
1
2
Dt�

� ½h2ðxi; yjþ1
2
Þyjþ1

2
� b�i;jþ1

2
Dt; h2ðxi; yjþ1

2
Þyjþ1

2
þ bþi;jþ1

2
Dt� ð6Þ

Diþ1
2;j

:¼ ½h1ðxiþ1
2
; yjÞxiþ1

2
� a�iþ1

2;j
Dt; h1ðxiþ1

2
; yjÞxiþ1

2
þ aþ

iþ1
2;j

Dt�

� ½h2ðxiþ1
2
; yj�1

2
Þyj�1

2
þ bþiþ1

2;j�
1
2
Dt; h2ðxiþ1

2
; yjþ1

2
Þyjþ1

2
� b�iþ1

2;jþ
1
2
Dt� ð7Þ

Diþ1
2;jþ

1
2

:¼ ½h1ðxiþ1
2
; yjþ1

2
Þxiþ1

2
� a�iþ1

2;jþ
1
2
Dt; h1ðxiþ1

2
; yjþ1

2
Þxiþ1

2
þ aþ

iþ1
2;jþ

1
2
Dt�

� ½h2ðxiþ1
2
; yjþ1

2
Þyjþ1

2
� b�iþ1

2;jþ
1
2
Dt; h2ðxiþ1

2
; yjþ1

2
Þyjþ1

2
þ bþiþ1

2;jþ
1
2
Dt� ð8Þ
Here a� and b� are the maximum physical propagation velocities of any signal to the right (+) and left (�) in the x- and y-
directions, respectively. These can also be specified by a mathematical expression:
aþ
iþ1

2;j
¼max kmax

of1

ou
ðuþ

iþ1
2;j
Þ

� �
; kmax

of1

ou
ðu�iþ1

2;j
Þ

� �
;0

� �
ð9Þ

a�iþ1
2;j
¼ �min kmin

of1

ou
ðuþ

iþ1
2;j
Þ

� �
; kmin

of1

ou
ðu�iþ1

2;j
Þ

� �
; 0

� �
ð10Þ
where kmax and kmin are the largest and smallest eigenvalues of the Jacobian of1=ou, respectively. The corresponding propa-
gation velocities b�iþ1

2;j
in the y-direction are defined in a similar way. Here u�

iþ1
2;j

are the left-/right-handed pointvalues at cen-

tre of the cell faces, which can be obtained from the polynomial reconstruction by:
uþ
iþ1

2;j
:¼ piþ1;jðxiþ1

2
; yjÞ and u�iþ1

2;j
:¼ pi;jðxiþ1

2
; yjÞ ð11Þ
With the above definitions for the possibly non-smooth regions the smooth central region is given as:
Di;j ¼ ½h1ðxi�1
2
; yjÞxi�1

2
;h1ðxiþ1

2
; yjÞxjþ1

2
� � ½h2ðxi; yj�1

2
Þyi�1

2
; h2ðxi; yjþ1

2
Þyjþ1

2
� n
[
�
½Di;j�1

2
[ Di�1

2;j
[ Di�1

2;j�
1
2
� ð12Þ
The desired numerical scheme can now be obtained in a three-step procedure. First Eq. (2) is integrated over the individual
sub-areas of the cell introduced above and over one time-step ½tn; tnþ1�. This yields local cell averages for the next time-step
Cellular structure for a non-Cartesian grid. Here we show nine cells, where only for the central one Ci;j the regions that possibly contain
inuities are highlighted by the grey areas. Di;j , at the same time, indicates the smooth central sub-region of cell Ci;j .
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tnþ1 (denoted as �xnþ1
i;j for Di;j, �xnþ1

i;j�1
2

for Di;j�1
2
, �xnþ1

i�1
2;j

for Di�1
2;j

and �xnþ1
i�1

2;j�
1
2

for Di�1
2;j�

1
2
). Secondly a piecewise polynomial recon-

struction is obtained from these cell averages. This is written in a similar way as in Eq. (4):
~xnþ1ðx; yÞ :¼
X

i;j

~xnþ1
i;j

~vi;j þ ~xnþ1
i;jþ1

2

~vi;jþ1
2
þ ~xnþ1

iþ1
2;j

~viþ1
2;j
þ ~xnþ1

iþ1
2;jþ

1
2

~viþ1
2;jþ

1
2

h i
ð13Þ
Finally this reconstruction polynomial is projected back to the original grid (as was done for the first time in [13]) to yield cell
averages again:
�unþ1
i;j ¼

1
jCi;jj

Z Z
Ci;j

~xnþ1ðn;gÞh1ðn;gÞh2ðn;gÞdndg ð14Þ
So far we have essentially discussed the derivation of the fully discrete scheme. As discussed in the introduction, we aim to
derive a semi-discrete scheme. Taking, thus, into account that we will from now on be using Dt ! 0, we find for the area of
the corner regions: jDi�1

2;j�
1
2
j ¼ OðDt2Þ – in the following we will indicate areas by the use of vertical bars. Due to the fact that

the area of the other regions which may contain discontinuities are of order Dt, the corner regions can be neglected in the
semi-discrete version of the scheme. Keeping only terms up to the order of Dt, we thus find, for the regions possibly contain-
ing discontinuities defined by Eqs. (6) and (7):
Di;jþ1
2
’ ½h1ðxi�1

2
; yjþ1

2
Þxi�1

2
; h1ðxiþ1

2
; yjþ1

2
Þxiþ1

2
� � ½h2ðxi; yjþ1

2
Þyjþ1

2
� b�i;jþ1

2
Dt; h2ðxi; yjþ1

2
Þyjþ1

2
þ bþi;jþ1

2
Dt� ð15Þ

Diþ1
2;j

:¼ ½h1ðxiþ1
2
; yjÞxiþ1

2
� a�iþ1

2;j
Dt; h1ðxiþ1

2
; yjÞxiþ1

2
þ aþ

iþ1
2;j

Dt� � ½h2ðxiþ1
2
; yj�1

2
Þyj�1

2
; h2ðxiþ1

2
; yjþ1

2
Þyjþ1

2
� ð16Þ
For the intersection of the regions Di;j�1
2

and Di�1
2;j

with the cell Ci;j we now introduce the notation:
Si;j�1
2
¼ Ci;j \ Di;j�1

2
and Si�1

2;j
¼ Ci;j \ Di�1

2;j
ð17Þ
Making use of this notation we find for the relation between ~xnþ1 and �xnþ1 in the different regions:
Z Z
S

i;j�1
2

~xnþ1ðn;gÞh1ðn;gÞh2ðn;gÞdndg ¼ jSi;j�1
2
j �xnþ1

i;j�1
2
þ OðDt2Þ ð18Þ

Z Z
S

i�1
2;j

~xnþ1ðn;gÞh1ðn;gÞh2ðn;gÞdndg ¼ jSi�1
2;j
j �xnþ1

i�1
2;j
þ OðDt2Þ ð19Þ
In the semi-discrete limit we will neglect any quantities of order OðDt2Þ. For the smooth central region of the cell, however,
we find without any approximation due to the conservation property of the reconstruction:
Z Z
Di;j

~xnþ1ðn;gÞh1ðn;gÞh2ðn;gÞdndg ¼ jDi;jj �xnþ1
i;j ð20Þ
Thus, the only ingredients that are still missing for the computation of the scheme are the areas of the sub-regions and the
local cell averages at the next time-step. In the semi-discrete limit the area of the non-smooth regions is approximately:
Si�1
2;j

��� ��� ’ a�
i�1

2;j
Dt h2ðxi�1

2
; yjÞDy ð21Þ

Si;j�1
2

��� ��� ’ h1ðxi; yj�1
2
ÞDx b�i;j�1

2
Dt ð22Þ
Together with Eqs. (18) and (19), we thus find:
limDt!0
1

DtjCi;jj

Z Z
S

i�1
2;j

~xnþ1
i�1

2;j
h1ðn;gÞh2ðn;gÞdndg ¼

h2ðxi�1
2
; yjÞDy

jCi;jj
a�

i�1
2;j

lim
Dt!0

�xnþ1
i�1

2;j
ð23Þ

limDt!0
1

DtjCi;jj

Z Z
S

i;j�1
2

~xnþ1
i;j�1

2
h1ðn;gÞh2ðn;gÞdndg ¼

h1ðxi; yj�1
2
ÞDx

jCi;jj
b�i;j�1

2
lim
Dt!0

�xnþ1
i;j�1

2
ð24Þ
The local cell averages are now obtained by integrating Eq. (2) over one time-step and over the corresponding sub-domains.
The temporal and spatial integration yields for �xnþ1

iþ1
2;j

(the cell average for the region Diþ1
2;j

):



R. Kissmann et al. / Journal of Computational Physics 228 (2009) 2119–2131 2123
ðaþ
iþ1

2;j
þ a�iþ1

2;j
Þh2ðxiþ1

2
; yjÞDy

� 	
�xnþ1

iþ1
2;j
¼
Z y

jþ1
2

y
j�1

2

aþ
iþ1

2;j
pn

iþ1;jðxiþ1
2
;gÞ þ a�iþ1

2;j
pn

i;jðxiþ1
2
;gÞ

�

� f1ðpn
iþ1;jðxiþ1

2
;gÞÞ � f1ðpn

i;jðxiþ1
2
;gÞÞ

� 		
h2ðxiþ1

2
;gÞdg ð25Þ
and for the region Di;jþ1
2
:

ðbþi;jþ1
2
þ b�i;jþ1

2
Þh1ðxi; yjþ1

2
ÞDx

� 	
�xnþ1

i;jþ1
2
¼
Z x

iþ1
2

x
i�1

2

bþi;jþ1
2
pn

i;jþ1ðn; yjþ1
2
Þ þ b�i;jþ1

2
pn

i;jðn; yjþ1
2
Þ � f2ðpn

i;jþ1ðn; yjþ1
2
ÞÞ

��

� f2ðpn
i;jðn; yjþ1

2
ÞÞ
		

h1ðn; yjþ1
2
Þdn ð26Þ
Even though we have the advantage that the central region does not contain any discontinuity, the corresponding expression
is nonetheless the most complex to arrive at. Integration of the expression ou=ot over the central part (in the semi-discrete
limit, where this region is assumed to be of the same shape as the cell) and averaging over one time-step Dt yields:
1
Dt
jDi;jj �xnþ1

ij � �xn
ij

� 	
’ 1

Dt
jDi;jj �xnþ1

ij � jCi;jj�un
i;j � a�iþ1

2;j
Dt
Z y

jþ1
2

y
j�1

2

pi;jðxiþ1
2
;gÞh2ðxiþ1

2
;gÞdg

0
@

0
@

� aþ
i�1

2;j
Dt
Z y

jþ1
2

y
j�1

2

pi;jðxi�1
2
;gÞh2ðxi�1

2
;gÞdg� b�i;jþ1

2
Dt
Z x

iþ1
2

x
i�1

2

pi;jðn; yjþ1
2
Þh1ðn; yiþ1

2
Þdn

�bþi;j�1
2
Dt
Z x

iþ1
2

x
i�1

2

pi;jðn; yj�1
2
Þh1ðn; yi�1

2
Þdn

1
A
1
A ð27Þ
where j Di;j j is the area of the central region of the cell Di;j. Integration of Eq. (2) over Di;j together with an averaging over one
time-step then results in the following expression:
1
Dt
jDi;jj �xnþ1

ij � �xn
ij

� 	
¼ �

Z
Di;j

1
h1ðn;gÞh2ðn;gÞ

o h2ðn;gÞf1ðuÞð Þ
on

þ o h1ðn;gÞf2ðuÞð Þ
og

� �
h1ðn;gÞh2ðn;gÞdndg

’ �
Z y

jþ1
2

y
j�1

2

h2ðxiþ1
2
;gÞf1ðpi;jðxiþ1

2
;gÞ � h2ðxi�1

2
;gÞf1ðpi;jðxi�1

2
;gÞÞ

� 	
dg

�
Z x

iþ1
2

x
i�1

2

h1ðn; yjþ1
2
Þf2ðpi;jðn; yjþ1

2
ÞÞ � h1ðn; yj�1

2
Þf2ðpi;jðn; yj�1

2
ÞÞ

� 	
dn ð28Þ
The combination of Eqs. (27) and (28), thus, leads to the following result for the central smooth area of the cell:
limDt!0
1
Dt
jDi;jj
jCi;jj

�xnþ1
i;j � �un

i;j

� �
¼ �

a�
iþ1

2;j

jCi;jj

Z y
jþ1

2

y
j�1

2

pi;jðxiþ1
2
;gÞh2ðxiþ1

2
;gÞdg�

aþ
i�1

2;j

jCi;jj

Z y
jþ1

2

y
j�1

2

pi;jðxi�1
2
;gÞh2ðxi�1

2
;gÞdg

�
b�i;jþ1

2

jCi;jj

Z x
iþ1

2

x
i�1

2

pi;jðn; yjþ1
2
Þh1ðn; yjþ1

2
Þdn�

bþi;j�1
2

jCi;jj

Z x
iþ1

2

x
i�1

2

pi;jðn; yj�1
2
Þh1ðn; yj�1

2
Þdn

� 1
jCi;jj

Z y
jþ1

2

y
j�1

2

h2ðxiþ1
2
;gÞf1ðpi;jðxiþ1

2
;gÞÞ � h2ðxi�1

2
;gÞf1ðpi;jðxi�1

2
;gÞÞ

� 	
dg

� 1
jCi;jj

Z x
iþ1

2

x
i�1

2

h1ðn; yjþ1
2
Þf2ðpi;jðn; yjþ1

2
ÞÞ � h1ðn; yj�1

2
Þf2ðpi;jðn; yj�1

2
ÞÞ

� 	
dn ð29Þ
Finally we have to join all the above to find the evolution equation for the individual cell averages. Evaluating Eqs. (13) and
(14) in the semi-discrete limit we find for the temporal evolution of the cell average �ui;j:
d
dt

�ui;jðtÞ ¼ lim
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Inserting all relevant quantities, yields – after a little algebra – the following result:
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where we introduced the abbreviations:
a�iþ1
2
¼ aþ

iþ1
2;j
þ a�iþ1

2;j
ð32Þ

b�jþ1
2
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2
þ b�i;jþ1

2
ð33Þ
Whenever the area of the cell can be approximated to a sufficiently high degree by:
jCi;jj ¼ h1ðxi; yjÞDx h2ðxi; yjÞDy ð34Þ
we can derive a convenient form of the evolution equation. By the introduction of the functions F and G this is:
d
dt
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where F and G are given as:
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We note:

	 The CFL condition to satisfy the stability criterion for the above explicit scheme is given the constraint that the regions
containing the Riemann fans must not intersect. This is ensured by:
Dt < min
h1ðxi�1
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0
@

1
A ð38Þ
	 Be aware that the functions F and G are no direct approximations to the physical flux functions. This is due to the presence
of the scale factors in the corresponding equations, because these are in general dimensional quantities. To obtain approx-
imations of the physical flux functions, the order of the scheme has to be specified, thus determining how the integrals in
Eqs. (36) and (37) are to be evaluated. Thereafter the scale factors can be included into the evolution equation itself.

	 The scheme is also valid for a Cartesian mesh. In this case all geometrical scale factors are unity. Thus Eq. (35) is trans-
formed into the same form as Eq. (3.30) in [16]. The same is true for the corresponding flux functions given in Eqs.
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(36) and (37), which are reduced to the corresponding Eqs. (3.34) and (3.35) in [16] when the integrals are evaluated using
the second order midpoint rule.

Eqs. (35)–(37) represent a general form for the multi-dimensional central scheme for arbitrary grid-geometries. The
important point is that the geometric factors are introduced self-consistently. Thus there is no discussion as to where they
have to appear. Apart from that, the scheme was derived in a most general way. To derive an actual workable scheme one has
to choose the desired order of the scheme and the grid geometry. The order is fixed by the choice of a corresponding recon-
struction polynomial, which then also determines the form of the integrals over the cell boundaries. To illustrate this behav-
iour we will derive a scheme for plane polar coordinates in the next section.

3. Special form of the numerical scheme

Many problems in physics have inherent symmetries, which suggest the use of a plane polar grid geometry to solve these
problems. Therefore, we will illustrate the derivation of a working scheme from the general results given in Section 2 using
the example of plane polar coordinates. For these we have the following coordinates and geometrical factors:
ðx; yÞ ¼ ðr;/Þ; ðh1;h2Þ ¼ ð1; rÞ ð39Þ
Obviously the geometrical factors only depend on the first coordinate (and, thus, only on the index i). Apart from that, Eq.
(34) is the exact form for the area of a cell in plane polar coordinates. Therefore, we can use Eq. (35) to derive the scheme in
plane polar coordinates, yielding:
d
dt
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together with the order independent numerical flux functions evaluated from Eqs. (36) and (37):
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To be able to evaluate the above integrals we chose the resulting scheme to be of second order. Thus, the midpoint rule is
sufficient for the computation of the integrals. In this case we find for the numerical fluxes:
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For the reconstruction polynomial we use the following prescription in order to guarantee the non-oscillatory behaviour.
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ð45Þ
with corresponding definitions for the / direction. Here a larger h 2 ½1;2� corresponds to a less dissipative but still non-oscil-
latory limiter. This limiter was already discussed in Ref. [34]. It is explicitly defined by:
minmodða; b; cÞ :¼
signðaÞminðjaj; jbj; jcjÞ if signðaÞ ¼ signðbÞ ¼ signðcÞ
0 else

�
ð46Þ
For this limiter it can be shown that the reconstruction is not only non-oscillatory but also total-variation diminishing (TVD)
(see, e.g., [16]). This reconstruction guarantees oscillations to be suppressed at steep gradients as will be shown when the
different tests are discussed.

Finally, for the time integration we use a third order TVD Runge–Kutta scheme as is given in Refs. [30,31], which com-
pletes our algorithm. We will use this scheme to demonstrate the feasibility of this approach by several test-cases in the next
paragraph. Since one of these numerical experiments is actually using cylindrical coordinates, we will, however, first intro-
duce the corresponding scheme.

For (fully three-dimensional) cylindrical coordinates the scheme can be derived in two equivalent ways: either the
scheme is derived from the general prescription given in Appendix A, or the above scheme for plane polar coordinates is just
extended in the z-direction. Here we just state the result. Using the following coordinates and geometrical factors:
ðx; y; zÞ ¼ ðr;/; zÞ; ðh1;h2; h3Þ ¼ ð1; r;1Þ ð47Þ
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we find for the scheme in cylindrical coordinates:
d
dt

�ui;j;kðtÞ ¼ �
Fiþ1

2;j;k
ðtÞ � Fi�1

2;j;k
ðtÞ

Dr
�

Gi;jþ1
2;k
ðtÞ � Gi;j�1

2;k
ðtÞ

riD/
�

Hi;j;kþ1
2
ðtÞ � Hi;j;k�1

2
ðtÞ

Dz
ð48Þ
with the numerical fluxes:
Fi�1
2;j;k
ðtÞ ¼

ri�1
2;k

a�
i�1

2
ri

a�i�1
2;j;k

f1ðpn
i;j;kðri�1

2
;/j; zkÞÞ þ aþ

i�1
2;j;k

f1ðpn
i�1;j;kðri�1

2
;/j; zkÞÞ

�
ð49Þ

�aþ
i�1

2;j;k
a�i�1

2;j;k
ðpn

i;j;kðri�1
2
;/j; zkÞ � pn

i�1;j;kðri�1
2
;/j; zkÞÞ

	
Gi;j�1

2;k
ðtÞ ¼ 1

b�j�1
2

b�i;j�1
2;k

f2ðpn
i;j;kðri;/j�1

2
; zkÞÞ þ bþi;j�1

2;k
f2ðpn

i;j�1;kðri;/j�1
2
; zkÞÞ

�
ð50Þ

�bþi;j�1
2;k

b�i;j�1
2;k
ðpn

i;j;kðri;/j�1
2
; zkÞ � pn

i;j�1;kðri;/j�1
2;zk
ÞÞ
	

Hi;j;k�1
2
ðtÞ ¼ 1

c�
k�1

2

c�i;j;k�1
2
f3ðpn

i;j;kðri;/j; zk�1
2
ÞÞ þ cþ

i;j;k�1
2
f3ðpn

i;j;k�1ðri;/j; zk�1
2
ÞÞ

�
ð51Þ

�cþ
i;j;k�1

2
c�i;j;k�1

2
ðpn

i;j;kðri;/j; zk�1
2
Þ � pn

i;j;k�1ðri;/j; zk�1
2
ÞÞ
	

The time integration and the reconstruction are done in an analogous way to the scheme in plane polar coordinates.
This concludes the derivation of the schemes applied in the numerical experiments to be discussed in the subsequent
section.

4. Numerical tests

To demonstrate the validity and study the accuracy of our numerical scheme we performed several numerical experi-
ments based on the so-called Euler equations. These are a system of hyperbolic equations describing compressible hydrody-
namical flows. They are given as:
oq
ot
¼ �r � ðquÞ ð52Þ

o quð Þ
ot

¼ �r � ðquuþ p1Þ þ S ð53Þ
oe
ot
¼ �r � ððeþ pÞuÞ ð54Þ
where q is the mass density, u is the flow velocity, p is the pressure and 1 is the unit matrix. The pressure is connected to the
total energy density via:
e ¼ p
c� 1

þ 1
2
qu2 ð55Þ
Due to the tensorial character of the fluxes for the momentum equation, we have to include additional source terms to Eq.
(53). In particular, we find for our cylindrical coordinate system that we have to include source terms for the r and / momen-
tum equations. Specifically, these are the inertial terms
Sr ¼
qv2

/ þ p
r

and S/ ¼
�qvrv/

r
ð56Þ
In the subsequent paragraphs we describe several numerical experiments using the Euler equations, which will serve as tests
for different aspects of the numerical scheme. For the following numerical experiments please be aware that all of the quan-
tities will be given in non-dimensional form.

4.1. The order of the scheme

To verify the order of the scheme we used two simple tests in plane polar coordinates. For the first we advected a small
amplitude sine-disturbance in the azimuthal direction for one full revolution. Setting the radial velocity to zero this test can
be shown to correspond to a Cartesian advection test and indeed yields the same results. In particular the form of the dis-
turbance is conserved by the scheme and it approaches second order for high spatial resolutions.

For the radial direction we adopted a simple advection test introduced by [33]. This test is initialised by a constant density
and a velocity field proportional to the radial distance from the origin of a cylindrical coordinate system ðv r ¼ v0rÞ. Keeping
the velocity constant with time we find for the temporal evolution of the density:
qðtÞ ¼ q0e�2v0t ð57Þ
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As suggested in [33] we integrate the decaying density up to time t ¼ 6, where we have chosen v0 ¼ 1. Thus, we have a
change of the density of more than five orders of magnitude.

To investigate the order of the scheme we compared the numerical results for several spatial resolutions (the radial do-
main extending from r ¼ 0:4 to r ¼ 2:5 was partitioned into 16-256 cells) to the above analytical solution. We show the
dependence of the corresponding normalised error on the number of grid-cells in Fig. 2. Obviously the error decreases qua-
dratically with increasing spatial resolution. Thus, the scheme is still of second order despite the presence of the geometrical
scale factors.

4.2. The Sedov explosion in plane polar coordinates

A numerical experiment which is particularly suited for the test of a code on a plane polar grid is the Sedov explosion
problem (see [29]). In this test a localised enhancement of the thermal energy is injected into an otherwise homogeneous
and static background medium. This energy enhancement evolves into a radial blast wave in a self-similar fashion. The prob-
lem is similar to the shock tube test problem used for one-dimensional tests on Cartesian grids (see, e.g., [32]) in that there
exists a semi-analytical solution. Thus, it is possible to test whether the code yields the correct shock-strength, -location and
-speed. This is a condition which has to be fulfilled by every conservative code. Therefore, it is a good indication to find out
whether the geometrical factors are correctly implemented.

The Sedov problem is initialised via a localised pressure enhancement at the origin of the form:
Fig. 2.
error.
einit ¼
�

VInit
¼ 3�
ðmþ 2Þpdrmþ1 ð58Þ
Here, c is the adiabatic exponent, which is chosen to be c ¼ 1:4 for all Sedov tests in this work. � is the energy to be added to
the simulation domain and VInit is the volume of the region, into which the energy is added. On the right hand side we state
the expression in an explicit form for an arbitrary number of spatial dimensions, where r denotes the distance from the origin
of the coordinate system. Here m ¼ 1 corresponds to the two-dimensional (planar) Sedov explosion and m ¼ 2 to the genu-
inely three-dimensional case.

We solved the Sedov problem for cylindrical coordinates on a radial grid from 0 to 0.5, which was decomposed into 200
equidistant cells in the radial direction. For the azimuthal direction and the vertical direction we only used a single cell in
this test. Hence it is a one-dimensional test of the plane polar coordinate system. The background thermal energy was chosen
as eth ¼ 10�5 and the blast was initialised with an energy of � ¼ 1, which was distributed over the three inner grid-cells. The
time-step for the simulations was adapted such that the CFL number never exceeded 0.4.

The results of the corresponding simulations are compared to the semi-analytical solution in Fig. 3 for the normalised
time t ¼ 0:1. Obviously the numerical solution for the density and the velocity perfectly fits to the analytical results. This
leads to the conclusion that the pressure part of the source term Sr and also the geometrical factors are indeed given correctly
in our formulation. The correctness of the other directions will be tested by further simulations, which take more general
geometries into account.

4.3. Sedov explosion in cylindrical coordinates

Naturally the above test can be made for any grid geometry. After having shown that the radial part of the Euler equa-
tions is working correctly, we now have to take care of the other components. For the first of these tests we again make
use of the Sedov problem. This time, however, we investigate the Sedov problem in three spatial dimensions. We are using
Dependence of the relative numerical error of the density on spatial resolution. The solid line corresponds to a quadratic decrease of the numerical



Fig. 3. Results for the Sedov explosion problem in plane polar coordinates at time t ¼ 0:1. On the left the density is shown as a function of the radius. On the
right the velocity is shown in a similar fashion. In both figures the analytical solution is superimposed as the solid line.
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cylindrical coordinates, thus yielding a test-case for which the evolution of the shock is not aligned to either the r or the
z-axis.

The simulations were done with a resolution of 200 grid-points in the radial and the z-direction. For the azimuthal direc-
tion we again took only one grid-point into account (the correctness of this direction will be confirmed by the next test-prob-
lem). Results of these simulations are depicted in Figs. 4 and 5. In the former of these we show contours for the thermal
energy and the density. Obviously the spherical nature of the problem is nicely captured by the code. Now we have to check
whether the speed and the strength of the radial shock wave are also computed correctly.

To show this we computed a scatter plot for the different quantities, i.e., we plot the value of the individual quantities
over the distance to the origin of the blast wave for each individual cell in the computational domain. The corresponding
results for the density are given in Fig. 5. Also in this numerical test the data nicely follow the analytical solution. As in
the preceding test the shock again can be seen to be at the correct position with the correct strength.

Thus, we can conclude that on one hand, the geometrical terms are correct for the radial and the z-direction, and on the
other hand, the code is still sufficiently conservative to yield the correct shock solutions, even though the inclusion of the
additional source terms might disturb this feature of the code. Now we finally come to a numerical experiment, which
can be used to demonstrate the correctness of the code also for the azimuthal direction.
Fig. 4. Results for the Sedov explosion problem in cylindrical coordinates at time t ¼ 0:08. On the left we show the thermal energy distribution and on the
right the density. These quantities are shown for a given /, where the radius goes to the right and z to the top.



Fig. 5. Scatter plot for the density for the Sedov problem. The individual data-points indicate the density at all grid-points in the numerical domain. The
density values are plotted as a function of the distance from the origin of the explosion. The data are given for the time t ¼ 0:08.
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4.4. A general problem

The most general problem to be investigated as a test here is the classical Shock tube problem, which was already men-
tioned above. This test can be used as a strictly one-dimensional problem in Cartesian geometry. Here, however, we will ap-
ply this test to plane polar coordinates, which are clearly not adapted to the problem.

This numerical experiment is initialised by the introduction of a contact discontinuity at xþ y ¼ 0:5, with different den-
sity- and pressure-values on both sides of the discontinuity. In particular we choose for the initial conditions:
½qðxÞ;pðxÞ� ¼
½10;100� if xþ y < 0:5
½1;1� if xþ y P 0:5

�
ð59Þ
where the adiabatic exponent is again chosen to be c ¼ 1:4. This is a modified version of the original problem, which yields
even stronger shocks (see, e.g., [7]). Like in the preceding tests there exists a semi-analytical solution for this problem. Thus,
we can investigate the results in a similar manner as done above. We used the analytical solution to prescribe the boundary
conditions at /min and /max. At rmin and rmax we used extrapolating boundaries. We decided to use the analytical solution at
the /-boundaries in order to avoid any spurious oscillations, which might be introduced by an extrapolation procedure near
the resulting shock wave. The simulation was run with a spatial resolution of 200 grid-points in the radial and the azimuthal
directions. The time-step was changed adaptively so that the CFL number never exceeded 0.2.

Due to the fact that the geometry of the numerical grid does not fit to the problem this setup constitutes a test for all the
geometrical factors and also all the momentum source terms included in the scheme. Due to the presence of the resulting
shock wave we can also test the conservation properties of the code.

In Fig. 6 the resulting thermal energy contours are shown. It is obvious that the shock front is very straight even though
the coordinates are not adapted to the problem. Also there are no apparent spurious oscillations. As in the previous tests,
however, we have to quantify the results in order to make sure the shocks are correct with regard to their strength and posi-
tion. To this end we show a scatter plot for the resulting density in the same figure. The individual data-points are given as a
function of their perpendicular distance to some reference line parallel to the initial contact discontinuity. In this plot the
initial discontinuity was at x ¼ 0:5. The comparison to the analytical solution (shown in red) demonstrates the excellent
agreement of the numerical results to the analytical predictions. As in the previous tests the shocks are again at the proper
position with the correct strength. Moreover, there are no spurious oscillations.

The same test was run with a similar configuration for a 3D system in spherical coordinates. The results were similar to
the ones shown for plane polar coordinates. Again, the shock was in the correct position with the correct strength. To keep
this presentation concise, however, we refrain from discussing this numerical experiment.

After this test, we can conclude that the numerical scheme has been derived and implemented correctly. There are no
problems originating from the geometrical factors or the source terms in the numerical scheme. Obviously the resulting



Fig. 6. (Left) colour contours for the results of the shock tube problem in plane polar coordinates. Shown is the thermal energy. (Right) scatter plot for the
density of the shock tube problem in plane polar coordinates. The data are compared to the analytical solution (shown in red). In both plots we see on the
left the undisturbed medium followed by a rarefaction wave. The sharp increase of the density is a contact discontinuity, which is finally followed by a
shock. Both figures are given for time t ¼ 0:08. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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scheme is still sufficiently conservative so that shocks in the numerical experiments are reproduced correctly regardless of
their orientation with respect to the grid.
5. Conclusion

In this paper we have constructed of a numerical scheme for the integration of hyperbolic partial differential equations on
general rectangular grids. The scheme has been constructed in a most general way leaving the choice of the order of the
scheme through a choice of the reconstruction polynomial to the user. After the general derivation we demonstrated the
construction of an actual numerical scheme from the general equations. For this we used the example of plane polar and
cylindrical coordinates.

For this scheme we showed several numerical experiments, for all of which we found excellent agreement of the numer-
ical results with corresponding analytical solutions. Thus, we were able to demonstrate the correct derivation and imple-
mentation of the scheme.

The method introduced in this paper can easily be extended to more than two dimensions. The resulting scheme is a
straightforward extension of Eqs. (35)–(37). It can be shown, that the intuitive extension directly yields the correct results.
We will, however, refrain from doing so in this paper due to the huge amount of algebra. Instead we will just give the cor-
responding results in Appendix A.

In realistic physical systems the conservation of quantities such as mass, energy and angular momentum plays a very
important role. The appearance of source terms in the momentum equations on the right hand side may formally destroy
these conservation properties. We point out that in the case of the important angular momentum a minor reformulation
of the equation will explicitly bring it into conservative form again.
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Appendix A. The three-dimensional scheme

The general scheme for three dimensions can be derived in an analogous way to the two-dimensional scheme. Here we
will only state the results skipping the lengthy algebra. For the temporal evolution of the cell average �uðx; y; zÞ we find:
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where the numerical fluxes F, G and H are given as:
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Here we indicated the volume of the cell as j Ci;j;k j.
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